Enhanced stability of enzyme organophosphate hydrolase interfaced on the carbon nanotubes.
نویسندگان
چکیده
In this paper we demonstrate that SWNTs and a covalent immobilization strategy enable very sensitive sensors with excellent long term stability. Organophosphorus hydrolase (OPH) functionalized single and multi-walled carbon nanotube (CNT) conjugates were exploited for direct amperometric detection of paraoxon, a model organophosphate. The catalytic hydrolysis of paraoxon produces equimoles of p-nitrophenol; oxidation was monitored amperometrically in real time under flow-injection (FIA) mode. OPH covalently immobilized on single-walled carbon nanotubes (SWNTs) demonstrated much higher activity than OPH conjugated to multi-walled carbon nanotubes (MWNTs). The dynamic concentration range for SWNT-OPH was 0.5-8.5 micromolL(-1) with a detection limit of 0.01 micromolL(-1) (S/N=3). In addition to this high sensitivity, the immobilized OPH retained a significant degree of enzymatic activity, and displayed remarkable stability with only 25% signal loss over 7 months. These results suggest that covalent immobilization of OPH on CNTs can be used for specific immobilization with advantages of long term stability, high sensitivity, and simplicity.
منابع مشابه
Optical Detection of Paraoxon Using Single-Walled Carbon Nanotube Films with Attached Organophosphorus Hydrolase-Expressed Escherichia coli
In whole-cell based biosensors, spectrophotometry is one of the most commonly used methods for detecting organophosphates due to its simplicity and reliability. The sensor performance is directly affected by the cell immobilization method because it determines the amount of cells, the mass transfer rate, and the stability. In this study, we demonstrated that our previously-reported microbe immo...
متن کاملEvaluation of the organophosphorus hydrolase enzyme activity in creams and investigation of its stability
The main purpose of this project is investigation of the organophosphorus hydrolase (OPH) enzyme activity in water in oil (w/o) and oil in water (o/w) creams and investigation of the OPH enzyme stability in formulated creams. OPH enzyme was extracted and purified from strain flavobacterium. The w/o and o/w creams were prepared using different formulations. In order to achieve an emulsion with m...
متن کاملDevelopment of sensors for direct detection of organophosphates. Part II: sol–gel modified field effect transistor with immobilized organophosphate hydrolase
pH-sensitive field effect transistors (FET) were modified with organophosphate hydrolase (OPH) and used for direct detection of organophosphate compounds. OPH is the organophosphate degrading gene product isolated from Pseudomonas diminuta. OPH was selected as an alternative to acetylcholinesterase, which requires inhibition mode sensor operation, enzyme regeneration before reuse, long sample i...
متن کاملA Disposable Biosensor for Organophosphorus Nerve Agents Based on Carbon Nanotubes Modified Thick Film Strip Electrode
A disposable biosensor based on acetylcholinesterase-functionalized acid purified multi-wall carbon nanotubes (CNTs) modified thick film strip electrode for organophosphorus (OP) insecticides was developed. The degree of inhibition of the enzyme acteylcholinesterase (AChE) by OP compounds was determined by measuring the electrooxidation current of the thiocholine generated by the AChE catalyzed...
متن کاملEnhanced activity and stability of organophosphorus hydrolase via interaction with an amphiphilic polymer.
A simple approach to enhancing the activity and stability of organophosphorus hydrolase (OPH) is developed based on interactions between the hydrophobic poly(propylene oxide) (PPO) block of amphiphilic Pluronics and the enzyme. This strategy provides an efficient route to new formulations for decontaminating organophosphate neurotoxins.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Colloids and surfaces. B, Biointerfaces
دوره 77 1 شماره
صفحات -
تاریخ انتشار 2010